Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.600
Filtrar
1.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557068

RESUMO

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Vírus do Mosaico do Tabaco , Antifúngicos , Sophora/química , Alcaloides/química , Antivirais/farmacologia , Antivirais/química , Sementes/química
2.
Viruses ; 16(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543805

RESUMO

This review describes the development of the bioassay as a means of quantifying plant viruses, with particular attention to tobamovirus. It delves into various models used to establish a correlation between virus particle concentration and the number of induced local lesions (the infectivity dilution curve), including the Poisson, Furumoto and Mickey, Kleczkowski, Growth curve, and modified Poisson models. The parameters of each model are described, and their application or performance in the context of the tobacco mosaic virus is explored. This overview highlights the enduring value of the infectivity dilution curve in tobamovirus quantification, providing valuable insights for researchers or practitioners of bioassays and theoreticians of modeling.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Tobamovirus/genética , Bioensaio , Doenças das Plantas
3.
Sci Rep ; 14(1): 7168, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532056

RESUMO

Chemical pesticide delivery is a fundamental aspect of agriculture. However, the extensive use of pesticides severely endangers the ecosystem because they accumulate on crops, in soil, as well as in drinking and groundwater. New frontiers in nano-engineering have opened the door for precision agriculture. We introduced Tobacco mild green mosaic virus (TMGMV) as a viable delivery platform with a high aspect ratio and favorable soil mobility. In this work, we assess the use of TMGMV as a chemical nanocarrier for agriculturally relevant cargo. While plant viruses are usually portrayed as rigid/solid structures, these are "dynamic materials," and they "breathe" in solution in response to careful adjustment of pH or bathing media [e.g., addition of solvent such as dimethyl sulfoxide (DMSO)]. Through this process, coat proteins (CPs) partially dissociate leading to swelling of the nucleoprotein complexes-allowing for the infusion of active ingredients (AI), such as pesticides [e.g., fluopyram (FLP), clothianidin (CTD), rifampicin (RIF), and ivermectin (IVM)] into the macromolecular structure. We developed a "breathing" method that facilitates inter-coat protein cargo loading, resulting in up to ~ 1000 AIs per virion. This is of significance since in the agricultural setting, there is a need to develop nanoparticle delivery strategies where the AI is not chemically altered, consequently avoiding the need for regulatory and registration processes of new compounds. This work highlights the potential of TMGMV as a pesticide nanocarrier in precision farming applications; the developed methods likely would be applicable to other protein-based nanoparticle systems.


Assuntos
Praguicidas , Vírus do Mosaico do Tabaco , Tobamovirus , Ecossistema , Praguicidas/metabolismo , Solo , Vírion
4.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469725

RESUMO

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Assuntos
Superóxidos , Vírus do Mosaico do Tabaco , Camundongos , Animais , Meios de Contraste/química , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Fígado
5.
J Agric Food Chem ; 72(12): 6684-6690, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485919

RESUMO

Based on natural cerbinal, a series of novel 4-bit modified cyclopenta[c]pyridine derivatives containing a substituted amide or ester moiety were designed and synthesized for the first time. Their structures were systematically characterized by NMR and high-resolution mass spectra (HRMS). The anti-TMV activities, such as protection, inactivation, and curative effects in vivo, were evaluated methodically. The lethal activities of the target compounds against the agriculturally common pests Plutella xylostella larvae and Aphis laburni kaltenbach were evaluated by the immersion method. The bioassay results indicated that most of the target compounds exhibited good to excellent anti-TMV activity levels, good lethal activity against P. xylostella larvae at 600 µg/mL, and greater insecticidal activities against A. laburni Kaltenbach compared to the plant-derived insecticide rotenone. The binding mode of cerbinal and cyclopenta[c]pyridine derivatives 4b, 4p, and 4v with the TMV protein was studied with a molecular docking method, which indicated that the functional group of the 2- and 4-positions is vital for anti-TMV activity. The systematic research provides strong evidence that these novel 4-bit modified cyclopenta[c]pyridine derivatives could become potential agrochemical insecticides and anti-TMV agents.


Assuntos
Indenos , Inseticidas , Vírus do Mosaico do Tabaco , Inseticidas/química , Relação Estrutura-Atividade , Agroquímicos/farmacologia , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Desenho de Fármacos , Piridinas/química , Estrutura Molecular
6.
J Agric Food Chem ; 72(13): 6900-6912, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513076

RESUMO

As a notorious phytopathogenic virus, the tobacco mosaic virus (TMV) severely reduced the quality of crops worldwide and caused critical constraints on agricultural production. The development of novel virucides is a persuasive strategy to address this predicament. Herein, a series of novel bisamide-decorated benzotriazole derivatives were elaborately prepared and screened. Biological tests implied that the optimized compound 7d possessed the most brilliant antiviral inactive profile (EC50 = 157.6 µg/mL) and apparently surpassed that of commercial ribavirin (EC50 = 442.1 µg/mL) 2.8-fold. The preliminary antiviral mechanism was elaborately investigated via transmission electron microscopy, microscale thermophoresis (MST) determination, RT-qPCR, and Western blot analysis. The results showed that compound 7d blocked the assembly of TMV by binding with coat protein (Kd = 0.7 µM) and suppressed TMV coat protein gene expression and biosynthesis process. Computational simulations indicated that 7d displayed strong H-bonds and pi interactions with TMV coat protein, affording a lower binding energy (ΔGbind = -17.8 kcal/mol) compared with Ribavirin (ΔGbind = -10.7 kcal/mol). Overall, current results present a valuable perception of bisamide decorated benzotriazole derivatives with appreciably virustatic competence and should be profoundly developed as virucidal candidates in agrochemical.


Assuntos
Ribavirina , Vírus do Mosaico do Tabaco , Triazóis , Relação Estrutura-Atividade , Ribavirina/farmacologia , Antivirais/farmacologia , Antivirais/química , Desenho de Fármacos
7.
J Agric Food Chem ; 72(13): 6979-6987, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520352

RESUMO

Potato virus Y (PVY) is an important plant virus that has spread worldwide, causing significant economic losses. To search for novel structures as potent antiviral agents, a series of chiral indole derivatives containing oxazoline moieties were designed and synthesized and their anti-PVY activities were evaluated. Biological activity tests demonstrated that many chiral compounds exhibited promising anti-PVY activities and that their absolute configurations exhibited obvious distinctions in antiviral bioactivities. Notably, compound (S)-4v displayed excellent curative and protective efficacy against PVY, with EC50 values of 328.6 and 256.1 µg/mL, respectively, which were superior to those of commercial virucide ningnanmycin (NNM, 437.4 and 397.4 µg/mL, respectively). The preliminary antiviral mechanism was investigated to determine the difference in antiviral activity between the two enantiomers of 4v chiral compounds. Molecular docking indicated a stronger binding affinity between the coating proteins of PVY (PVY-CP) and (S)-4v (-6.5 kcal/mol) compared to (R)-4v (-6.2 kcal/mol). Additionally, compound (S)-4v can increase the chlorophyll content and defense-related enzyme activities more effectively than its enantiomer. Therefore, this study provides an important basis for the development of chiral indole derivatives containing oxazoline moieties as novel agricultural chemicals.


Assuntos
Potyvirus , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Indóis/farmacologia , Desenho de Fármacos
8.
J Agric Food Chem ; 72(9): 4658-4668, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38388372

RESUMO

Food security is an important issue in the 21st century; preventing and controlling crop diseases and pests are the key to solve this problem. The creation of new pesticides based on natural products is an important and effective method. Herein, coumarins were selected as parent structures, and a series of their derivatives were designed, synthesized, and evaluated for their antiviral activities, fungicidal activities, and insecticidal activities. We found that coumarin derivatives exhibited good to excellent antiviral activities against tobacco mosaic virus (TMV). The antiviral activities of I-1, I-2a, I-4b, II-2c, II-2g, II-3, and II-3b are better than that of ribavirin at 500 µg/mL. Molecular docking research showed that these compounds had a strong interaction with TMV CP. These compounds also showed broad-spectrum fungicidal activities against 14 plant pathogenic fungi. The EC50 values of I-1, I-2a, I-3c, and II-2d are in the range of 1.56-8.65 µg/mL against Rhizoctonia cerealis, Physalospora piricola, Sclerotinia sclerotiorum, and Pyricularia grisea. Most of the compounds also displayed good insecticidal activities against Mythimna separata. Pesticide-likeness analysis showed that these compounds are following pesticide-likeness and have the potential to be developed as pesticide candidates. The present work lays a foundation for the discovery of novel pesticide lead compounds based on coumarin derivatives.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Praguicidas/farmacologia , Fungicidas Industriais/química , Antivirais/química , Cumarínicos/química , Simulação de Acoplamento Molecular , Inseticidas/química , Desenho de Fármacos
9.
J Agric Food Chem ; 72(7): 3506-3519, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346922

RESUMO

Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.


Assuntos
Potyvirus , Streptomyces , Vírus do Mosaico do Tabaco , Anisomicina , Simulação de Acoplamento Molecular , Vírus do Mosaico do Tabaco/genética , Streptomyces/genética , Antivirais/farmacologia , Doenças das Plantas
10.
Fitoterapia ; 173: 105812, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168568

RESUMO

A series of myricetin derivatives containing benzoxazinone were designed and synthesized. The structures of all compounds were characterized by NMR and HRMS. The structure of Y4 had been confirmed by single-crystal X-ray diffraction analysis. The test results of EC50 values of tobacco mosaic virus (TMV) suggested that Y8 had the best curative and protective effects, with EC50 values of 236.8, 206.0 µg/mL, respectively, which were higher than that of ningnanmycin (372.4, 360.6 µg/mL). Microscale thermophoresis (MST) experiments demonstrated that Y8 possessed a strong binding affinity for tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (Kd) value of 0.045 µM, which was superior to the ningnanmycin (0.700 µM). The findings of molecular docking studies revealed that Y8 interacted with multiple amino acid residues of TMV-CP through the formation of non-covalent bonds, which had an effect on the self-assembly of TMV particles. The malondialdehyde (MDA) and superoxide dismutase assay (SOD) content assays also fully verified that Y8 could stimulate the plant immune system and enhance disease resistance by reducing MDA content and increasing SOD content. In summary, myricetin derivatives containing benzoxazinone could be considered to further research and development as novel antiviral agents.


Assuntos
Flavonoides , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Estrutura Molecular , Benzoxazinas/farmacologia , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antivirais/farmacologia , Antivirais/química , Superóxido Dismutase , Desenho de Fármacos
11.
J Agric Food Chem ; 72(6): 2879-2887, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38241724

RESUMO

Tobacco mosaic virus coat protein (TMV-CP), as a potential target for the development of antiviral agents, can assist in the long-distance movement of viruses and plays an extremely important role in virus replication and propagation. This work focuses on the synthesis and the action mechanism of novel 4H-pyrazolo[3,4-d] pyrimidin-4-one hydrazine derivatives. The synthesized compounds exhibited promising antiviral activity on TMV. Specifically, compound G2 exhibited high inactivating activity (93%) toward TMV, slightly better than commercial reagent NNM (90%). The action of mechanism was further explored by employed molecular docking, molecular dynamics simulation, microscale thermophoresis, qRT-PCR, and transmission electron microscopy. Results indicated that G2 had the capability to interact with amino acid residues such as Trp352, Tyr139, and Asn73 in the active pocket of TMV-CP, creating strong hydrophobic interactions and thus obstructing the virus's self-assembly.


Assuntos
Antivirais , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antivirais/química , Hidrazinas/farmacologia
12.
Pestic Biochem Physiol ; 198: 105728, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225082

RESUMO

BACKGROUND: Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae. It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. RESULT: This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with ß-(1,3) glucoside bond as the main chain and ß-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916-338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa. The overexpression of resistance genes such as NPR1, PR1 and PR5, and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana. Besides, LW-1 induced crops resistance against plant pathogenic fungi. CONCLUSION: Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.


Assuntos
Arabidopsis , Vírus do Mosaico do Tabaco , Resistência à Doença/genética , Transdução de Sinais , Tabaco , Glucosídeos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética
13.
BMC Plant Biol ; 24(1): 67, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38262958

RESUMO

BACKGROUND: Tobacco mosaic virus (TMV) is a widely distributed viral disease that threatens many vegetables and horticultural species. Using the resistance gene N which induces a hypersensitivity reaction, is a common strategy for controlling this disease in tobacco (Nicotiana tabacum L.). However, N gene-mediated resistance has its limitations, consequently, identifying resistance genes from resistant germplasms and developing resistant cultivars is an ideal strategy for controlling the damage caused by TMV. RESULTS: Here, we identified highly TMV-resistant tobacco germplasm, JT88, with markedly reduced viral accumulation following TMV infection. We mapped and cloned two tobamovirus multiplication protein 2A (TOM2A) homeologs responsible for TMV replication using an F2 population derived from a cross between the TMV-susceptible cultivar K326 and the TMV-resistant cultivar JT88. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated loss-of-function mutations of two NtTOM2A homeologs almost completely suppressed TMV replication; however, the single gene mutants showed symptoms similar to those of the wild type. Moreover, NtTOM2A natural mutations were rarely detected in 577 tobacco germplasms, and CRISPR/Cas9-mediated variation of NtTOM2A led to shortened plant height, these results indicating that the natural variations in NtTOM2A were rarely applied in tobacco breeding and the NtTOM2A maybe has an impact on growth and development. CONCLUSIONS: The two NtTOM2A homeologs are functionally redundant and negatively regulate TMV resistance. These results deepen our understanding of the molecular mechanisms underlying TMV resistance in tobacco and provide important information for the potential application of NtTOM2A in TMV resistance breeding.


Assuntos
Vírus do Mosaico do Tabaco , Tobamovirus , Tabaco , Melhoramento Vegetal , Horticultura
14.
ACS Sens ; 9(1): 514-523, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38195409

RESUMO

The impact of plant pathogens on global crop yields is a major societal concern. The current agricultural diagnostic paradigm involves either visual inspection (inaccurate) or laboratory molecular tests (burdensome). While field-ready diagnostic methods have advanced in recent years, issues remain with detection of presymptomatic infections, multiplexed analysis, and requirement for in-field sample processing. To overcome these issues, we developed surface-enhanced Raman scattering (SERS)-sensing hydrogels that detect pathogens through simple contact with a leaf. In this work, we developed a novel reagentless SERS sensor for the detection of tobacco mosaic virus (TMV) and embedded it in an optimized hydrogel material to produce sensing hydrogels. To test the diagnostic application of our sensing hydrogels, we demonstrate their use to detect TMV infection in tobacco plants. This technology has the potential to shift the current agricultural diagnostic paradigm by offering a field-deployable tool for presymptomatic and multiplexed molecular identification of pathogens.


Assuntos
Hidrogéis , Vírus do Mosaico do Tabaco , Plantas , Tabaco , Folhas de Planta
15.
Chem Biodivers ; 21(2): e202301737, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38204291

RESUMO

A series of flavonol derivatives containing quinazolinone were designed and synthesized, and their antiviral activities against tobacco mosaic virus (TMV) were evaluated. The results of the half maximal effective concentration (EC50 ) test against TMV showed that the EC50 value of curative activity of K5 was 139.6 µg/mL, which was better than that of the commercial drug ningnanmycin (NNM) 296.0 µg/mL, and the EC50 value of protective activity of K5 was 120.6 µg/mL, which was superior to that of NNM 207.0 µg/mL. The interaction of K5 with TMV coat protein (TMV-CP) was investigated using microscale thermophoresis (MST) and molecular docking and the results showed that K5 can combine with TMV-CP more strongly to TMV-CP than that NNM can. Furthermore, the assay measuring malondialdehyde (MDA) content indicated that K5 had the ability to improve the disease resistance of tobacco. Hence, this study offers strong evidence that flavonol derivatives have potential as novel antiviral agents.


Assuntos
Quinazolinonas , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Quinazolinonas/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Desenho de Fármacos
16.
Mol Plant Microbe Interact ; 37(1): 36-50, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750816

RESUMO

Our earlier research showed that an interspecific tobacco hybrid (Nicotiana edwardsonii 'Columbia' [NEC]) displays elevated levels of salicylic acid (SA) and enhanced resistance to localized necrotic symptoms (hypersensitive response [HR]) caused by tobacco mosaic virus (TMV) and tobacco necrosis virus (TNV), as compared with another interspecific hybrid (Nicotiana edwardsonii [NE]) derived from the same parents. In the present study, we investigated whether symptomatic resistance in NEC is indeed associated with the inhibition of TMV and TNV and whether SA plays a role in this process. We demonstrated that enhanced viral resistance in NEC is manifested as both milder local necrotic (HR) symptoms and reduced levels of TMV and TNV. The presence of an adequate amount of SA contributes to the enhanced defense response of NEC to TMV and TNV, as the absence of SA resulted in seriously impaired viral resistance. Elevated levels of subcellular tripeptide glutathione (GSH) in NEC plants in response to viral infection suggest that in addition to SA, GSH may also contribute to the elevated viral resistance of NEC. Furthermore, we found that NEC displays an enhanced resistance not only to viral pathogens but also to bacterial infections and abiotic oxidative stress induced by paraquat treatments. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ácido Salicílico , Vírus do Mosaico do Tabaco , Ácido Salicílico/farmacologia , Proteínas de Plantas , Plantas , Vírus do Mosaico do Tabaco/fisiologia , Glutationa , Bactérias , Estresse Fisiológico , Doenças das Plantas
17.
Pest Manag Sci ; 80(2): 805-819, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794206

RESUMO

BACKGROUND: Naturally occurring alkaloids are particularly suitable for use as pesticide precursors and further modifications due to their cost-effectiveness, unique mechanism of action, tolerable degradation, and environmental friendliness. The famous tobacco mosaic virus (TMV) is a persistent plant pathogenic virus that can parasitize many plants and severely reduce crop production. To treat TMV disease, TMV helicase acts as a crucial target by hydrolyzing adenosine triphosphate (ATP) to provide energy for double-stranded RNA unwinding. RESULTS: To seek novel framework alkaloid leads targeting TMV helicase, this work successfully established an efficient screening platform for TMV helicase inhibitors based on natural alkaloids. In vivo activity screening, enzyme activity detection, and binding assays showed that Rutaecarpine from Evodia rutaecarpa (Juss.) Benth exhibited excellent TMV helicase inhibitory properties [dissociation constant (Kd ) = 1.1 µm, half maximal inhibitory concentration (IC50 ) = 227.24 µm] and excellent anti-TMV ability. Molecular docking and dynamic simulations depicted that Rutaecarpine could stably bind in active pockets of helicase with low binding energy (ΔGbind = -17.8 kcal/mol) driven by hydrogen bonding and hydrophobic interactions. CONCLUSION: Given Rutaecarpine's laudable bioactivity and structural modifiability, it can serve as a privileged building block for further pesticide discovery.


Assuntos
Alcaloides , Alcaloides Indólicos , Praguicidas , Quinazolinonas , Vírus do Mosaico do Tabaco , Viroses , Simulação de Acoplamento Molecular , Doenças das Plantas/prevenção & controle
18.
Pest Manag Sci ; 80(3): 1026-1038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37842924

RESUMO

BACKGROUND: Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS: Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 µg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 µg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 µg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 µg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION: Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Quinazolinas , Vírus do Mosaico do Tabaco , Xanthomonas , Ribavirina/metabolismo , Ribavirina/farmacologia , Simulação de Acoplamento Molecular , Piperazina/metabolismo , Piperazina/farmacologia , Proteômica , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antivirais/farmacologia , Doenças das Plantas , Relação Estrutura-Atividade
19.
Int J Biol Macromol ; 258(Pt 2): 128965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151087

RESUMO

Tobacco mosaic virus (TMV) is the most widely spread and harmful virus in the world, causing serious economic losses annually. However, the low anti-erosion ability of the pesticides for TMV management make it easy to be washed by the rain, which makes the effective duration of the pesticides shorter. In this paper, a new bio-based nanogel with superior antiviral activity was reported, and its slow-release behavior, rain erosion resistance and the antiviral mechanism was systematically studied. The results determined that the nanogels (Zn2+@ALGNP and Zn2+@ALGNP@PL) exhibited sustained releasing of Zn2+ with a 7 days duration, and the ε-PL coating could enhance the releasing rate of Zn2+. Moreover, Zn2+@ALGNP@PL displayed a lower contact angle, indicating greater adhesion to the leaf surface, and in consequence imposed better resistance to simulate rain erosion than pure Zn2+. Strikingly, Zn2+@ALGNP@PL could inhibit plant virus infection by aggregating the virions and reducing its coat protein stability, as well as inducing the efficient expression of reactive oxygen species, antioxidant enzymes and resistance genes to enhance plant resistance and promote plant growth. Overall, this study had successfully developed a high rain-erosion resistant bio-based nanogel capable of continue to induce resistant plants and promote plant growth.


Assuntos
Praguicidas , Polietilenoglicóis , Polietilenoimina , Vírus do Mosaico do Tabaco , Nanogéis , Tabaco , Doenças das Plantas , Antivirais/farmacologia , Praguicidas/farmacologia
20.
Pest Manag Sci ; 80(1): 176-191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37770408

RESUMO

BACKGROUND: Tobacco mild green mosaic virus strain U2 (TMGMV-U2) is a registered active ingredient in a bioherbicide to control tropical soda apple (TSA), Solanum viarum, an invasive weed. As required for registration, we developed empirical data on the host-virus interaction and the virus's host range, survival, spread, and genomic sequence. RESULTS: TMGMV-U2 killed TSA plants by causing systemic hypersensitive necrosis (SHN). It elicited local lesions in inoculated leaves which was followed by the plant's wilting and death. It moved from inoculated terminal leaves through the vasculature to roots and then to newly developed leaves. Phloem death was implicated in wilting and plant death. The SHN response was attenuated in plants grown at constant 32 °C. TMGMV-U2 titer in TSA was low compared to a systemically susceptible tobacco. The virus remained infective for up to 6 months in infected dead TSA tissues and in soil in which infected plants had grown. Susceptible tobacco and pepper plants grown in soil that previously had infected dead TSA or in soil amended with the virus remained asymptomatic and virus-free. A susceptible pepper crop grown in a field block following two consecutive crops of TMGMV-U2-infected susceptible tobacco grew disease-free and virus-free and without yield loss. Purified TMGMV-U2 was infective for 1 year when stored at -20 °C or 5 °C and for 1 month at room temperature. No virus spread was found in the field. Genomic analyses confirmed the registered isolate to be a U2 strain and free of satellite TMV. The TMGMV-U2-susceptible species preponderantly belonged to the Solanaceae. A few hosts that were killed belonged to this family. Several new hosts to TMGMV-U2 were found. These data enabled registration of TMGMV-U2. CONCLUSION: TMGMV-U2 can be used safely as a bioherbicide without risks to nontarget plants and the environment. © 2023 Society of Chemical Industry.


Assuntos
Malus , Vírus do Mosaico do Tabaco , Tobamovirus , Interações entre Hospedeiro e Microrganismos , RNA Viral/genética , Plantas/genética , Tabaco , Especificidade de Hospedeiro , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...